Changing-sign bubble solutions for an anisotropic sinh-Poisson equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

in this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. we use some natural constraints and the ljusternik-schnirelman critical point theory on c1-manifolds, to prove our main results.

متن کامل

New study to construct new solitary wave solutions for generalized sinh- Gordon equation

In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations.

متن کامل

Infinitely Many Solutions for Fractional Schrödinger-poisson Systems with Sign-changing Potential

In this article, we prove the existence of multiple solutions for following fractional Schrödinger-Poisson system with sign-changing potential (−∆)u+ V (x)u+ λφu = f(x, u), x ∈ R, (−∆)φ = u, x ∈ R, where (−∆)α denotes the fractional Laplacian of order α ∈ (0, 1), and the potential V is allowed to be sign-changing. Under certain assumptions on f , we obtain infinitely many solutions for this sys...

متن کامل

Bubbling Solutions for an Anisotropic Emden-Fowler Equation

We consider the following anisotropic Emden-Fowler equation ∇(a(x)∇u) + εa(x)e = 0 in Ω, u = 0 on ∂Ω where Ω ⊂ R is a bounded smooth domain and a(x) is a positive smooth function. We investigate the effect of anisotropic coefficient a(x) on the existence of bubbling solutions. We show that at given local maximum points of a(x), there exists arbitrarily many bubbles. As a consequence, the quanti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA

سال: 2011

ISSN: 1021-9722,1420-9004

DOI: 10.1007/s00030-011-0113-6